Selective mechanical transfer of graphene from seed copper foil using rate effects.

نویسندگان

  • Seung Ryul Na
  • Ji Won Suk
  • Li Tao
  • Deji Akinwande
  • Rodney S Ruoff
  • Rui Huang
  • Kenneth M Liechti
چکیده

A very fast, dry transfer process based on mechanical delamination successfully effected the transfer of large-area, CVD grown graphene on copper foil to silicon. This has been achieved by bonding silicon backing layers to both sides of the graphene-coated copper foil with epoxy and applying a suitably high separation rate to the backing layers. At the highest separation rate considered (254.0 μm/s), monolayer graphene was completely transferred from the copper foil to the target silicon substrate. On the other hand, the lowest rate (25.4 μm/s) caused the epoxy to be completely separated from the graphene. Fracture mechanics analyses were used to determine the adhesion energy between graphene and its seed copper foil (6.0 J/m(2)) and between graphene and the epoxy (3.4 J/m(2)) at the respective loading rates. Control experiments for the epoxy/silicon interface established a rate dependent adhesion, which supports the hypothesis that the adhesion of the graphene/epoxy interface was higher than that of the graphene/copper interface at the higher separation rate, thereby providing a controllable mechanism for selective transfer of graphene in future nanofabrication systems such as roll-to-roll transfer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalyst Interface Engineering for Improved 2D Film Lift-Off and Transfer

The mechanisms by which chemical vapor deposited (CVD) graphene and hexagonal boron nitride (h-BN) films can be released from a growth catalyst, such as widely used copper (Cu) foil, are systematically explored as a basis for an improved lift-off transfer. We show how intercalation processes allow the local Cu oxidation at the interface followed by selective oxide dissolution, which gently rele...

متن کامل

Cracking of Polycrystalline Graphene on Copper under Tension.

Roll-to-roll manufacturing of graphene is attractive because of its compatibility with flexible substrates and its promise of high-speed production. Several prototype roll-to-roll systems have been demonstrated, which produce large-scale graphene on polymer films for transparent conducting film applications.1-4 In spite of such progress, the quality of graphene may be influenced by the tensile ...

متن کامل

Temperature dependence of Raman spectra of graphene on copper foil substrate

We investigate the temperature dependence of the phonon frequencies of the G and 2Dmodes in the Raman spectra of monolayer graphene grown on copper foil by chemical vapor deposition. The Raman spectroscopy is carried out under a 532.16 nm laser excitation over the temperature range from 150 to 390 K. Both the G and 2D modes exhibit significant red shift as temperature increases, and the extract...

متن کامل

Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications.

We report a dry transfer method that can tranfer chemical vapor deposition (CVD) grown graphene onto liquid-sensitive surfaces. The graphene grown on copper (Cu) foil substrate was first transferred onto a freestanding 4 μm thick sputtered Cu film using the conventional wet transfer process, followed by a dry transfer process onto the target surface using a polydimethylsiloxane stamp. The dry-t...

متن کامل

Atomic-scale investigation of graphene grown on Cu foil and the effects of thermal annealing.

We have investigated the effects of thermal annealing on ex-situ chemically vapor deposited submonolayer graphene islands on polycrystalline Cu foil at the atomic-scale using ultrahigh vacuum scanning tunneling microscopy. Low-temperature annealed graphene islands on Cu foil (at ∼430 °C) exhibit predominantly striped Moiré patterns, indicating a relatively weak interaction between graphene and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 9 2  شماره 

صفحات  -

تاریخ انتشار 2015